Best Management Practices for Pile Driving and Related Operations – BC Marine and Pile Driving Contractors Association - March, 2003

The BC Marine and Pile Driving Contractors Association and Fisheries and Oceans Canada (DFO) have developed a Best Management Practices Policy for pile driving operations and related activities when working on the water within the province of British Columbia.

The Pile Driving Industry utilizes many different construction methods, equipment and materials in order to complete the contractual obligations for its client. Hammers; including drop, diesel, air, vibratory and hydraulic, vibroflot, and rotary, air and churn drills are the primary instruments in a pile driving operation. These hammers and drills are supported by a wide variety of heavy equipment, including a range of conventional cranes (truck mounted, crawler and pedestal mounted), spud scows, support barges and other water borne equipment. The piling types include treated timber (primarily creosote), concrete and steel (pipe, h-beam and sheet). Construction projects have the potential to utilize a number of different combinations of equipment and materials. It is the purpose of this document to examine the characteristics of each potential combination and develop a Best Management Practices Policy that will meet the following criteria:

-Maximize environmental protection

- -Avoid contravention of the Fisheries Act
- -Provide construction services economically

1)- Basic Rules of Operation

When in an aquatic environment, contractors will employ the following BASIC Best Management Practices:

- All equipment will be maintained in good proper running order to prevent leaking or spilling of potentially hazardous or toxic products. This includes hydraulic fluid, diesel, gasoline and other petroleum products.
- Storage of fuels and petroleum products will comply with safe operating procedures, including containment facilities in case of a spill.
- Pile cut-offs, waste or any miscellaneous unused materials will be recovered for either disposal in a designated facility or placed in storage. Under no circumstances will materials be deliberately thrown overboard.
- Contractors will have emergency spill equipment available whenever working near or on the water.
- Contractors, where possible, will position their water borne equipment in a manner that will minimize damage to identified fish habitat (i.e. eelgrass). Where possible, alternative methods will be employed (i.e.: use of anchors instead of spuds). In the event that circumstances will not allow an alternative, contractors will minimize the

damage and where required restore habitat to its original state at the completion of the project.

- Prior to the commencement of any work, the contractor will complete and forward the attached "Notice of Project" to the Department of Fisheries and Oceans. Letters of advice or Habitat Authorizations may be required, depending on the scope of work proposed.
- If contractors are working and a herring (or other fish) spawning occurs, the work will be temporarily suspended and the appropriate DFO contact notified.
- There will be no restriction of work during closure periods (the only exception being when spawning is present), provided the contractors employ an exclusion device (protective netting or geotextile material suspended in the water column around pile driving area) around the work area to prevent fish access or when required, an effective method of mitigating shock waves (bubble curtain).
- Whenever shock wave monitoring (hydrophone) is performed at a marine construction site and the findings are available to the contractor, the data will be forwarded to the BC Marine and Pile Driving Contractors Association and Svein Vagle at the Institute of Ocean Sciences in Sidney, BC. It is hoped that a database can be built that will catalogue work procedures and reflect the safest and most economical approach to protecting the fish and their habitat.

2)-Timber Piling (creosote):

When driving timber piling, the following Best Management Practices will be employed to minimize/prevent impact to marine fish and their habitat:

- Where possible, new timber piles will comply with the best Management Practices for the use of treated wood in aquatic environments as developed by the Canadian Institute of Treated Wood and the Western Wood Preservers Institute and the DFO document "Guidelines to Protect Fish and Fish Habitat from Treated Wood Used in Aquatic Environments in the Pacific Region".
- Where the above is not possible creosote piling will stand (weather) for a minimum of 45 days prior to installation.
- These requirements are for new piling only. Reused piling will not be subject to any additional treatments, however, pilings with excessive creosote should be avoided.
- Timber piling is normally driven using a drop hammer, a diesel/air impact hammer or a small vibratory hammer. Because of the relative small diameter of the timber pile, and its excellent energy absorbing quality, there is little threat of sound pressure impacts to fish and their habitat when driving timber piles.
- Environmental monitoring of sound pressure impacts is not required.
- When demolition is required on timber pile structures, the contractor will remove the piling by mechanical means and avoid breaking the piling at the mud line or below. All demolition operations should be monitored in order to control and contain the construction debris and to determine whether there are any effects on fish.

3)-Concrete Piles

When driving concrete piles, regardless of which hammer is being used, the following Best Management Practices will be employed to minimize/prevent impacts to fish habitat:

Less than 24 inch diameter

- The physical design of 24 inch concrete pile dictates that: 1/ the energy required must be controlled in order to prevent the pile from breaking and 2/ the concrete construction of the pile will absorb the energy. These two factors are expected to result in low level shock wave emission (less than 30 kPa.) and minimal or no effects to fish and their habitat should result.
- Environmental monitoring of sound pressure levels is generally not required.

Greater than 24 inch diameter

- When driving concrete piles with a diameter greater than 24 inches using an impact or hydraulic hammer, the following Best Management Practice will be employed to minimize the impact on fish habitat:
- Visual and hydrophone monitoring of the impact on fish by the sound waves emitted will be required. If sound pressures over 30 kPa is measured or a fish kill is evident, the contractor will introduce effective means of reducing the level of the shock waves. Appropriate mitigating measures would be the deployment of a bubble curtain over the full length of the wetted pile. This should reduce the shock waves to an acceptable level.
- If, despite the introduction of preventive measures, further visual/hydrophone monitoring reveals unacceptable conditions (fish kill or sound pressure over 30 kPa), then the work will stop immediately and the methods will be reviewed and corrected.

4)-Steel Pipe Piles

Less than 18 inch diameter

When driving steel piles 18 inches in diameter and less, regardless of the type of hammer being used, the following Best Management Practices will be employed to minimize/prevent impacts to fish habitat:

• Because of the small diameter of the pile it is assumed that the energy required to drive the pile to the final point of installation will not result in shock waves in excess of 30 kPa, therefore, protective measures to reduce shock waves are not expected to be required.

- If, however, ground conditions during pile installation cause a fish kill, work will cease and contractors will be responsible for introducing effective means of reducing the level of shock waves or will introduce measures that will prevent fish from entering the potentially harmful shock wave area. Appropriate mitigating measures would include the deployment a bubble curtain over the full length of the wetted pile. This technique should reduce the shock waves to an acceptable level.
- If, despite the introduction of preventive measures, further visual/hydrophone monitoring reveals unacceptable conditions (fish kill or sound pressure over 30 kPa), then the work will stop immediately and the methods will be reviewed and corrected.

Greater than 24 inches in diameter

When driving steel pipe piles with a diameter greater than 24 inches using impact or hydraulic hammers, the following Best Management Practices will be employed to minimize/prevent impacts to fish habitat:

- Hydrophone and visual monitoring of the effects of the shock waves on fish will be required. If a fish kill occurs, the contractor will introduce effective means of reducing the level of the shockwave. Appropriate mitigating measures would be the deployment of a bubble curtain over the full length of the wetted pile.
- If, despite the introduction of preventive measures, further visual/hydrophone monitoring reveals unacceptable conditions (fish kill or sound pressure over 30 kPa), then the work will stop immediately and the methods will be reviewed and corrected.

5)-Steel Sheet Piles and H-piles

When driving steel sheet piles and H-piles with a drop hammer, an impact hammer or a vibratory hammer, the following Best Management Practices will be employed to minimize the impact on fish habitat:

- It is anticipated that the driving of these types of piles will not generate shock waves in excess of 30kPa, therefore, mitigating measures are not expected to be required.
- If, however, ground conditions during pile installation cause a fish kill, work will cease and contractors will be responsible for introducing effective means of reducing the level of shock waves or will introduce measures that will prevent fish from entering the potentially harmful shock wave area. Appropriate mitigating measures would include the deployment a bubble curtain over the full length of the wetted pile. This technique should reduce the shock waves to an acceptable level.
- If, despite the introduction of preventive measures, further visual/hydrophone monitoring reveals unacceptable conditions (fish kill or sound pressure over 30 kPa), then the work will stop immediately and the methods will be reviewed and corrected.

6)-Stone Column Construction

When installing stone column using a vibroflot, the following Best Management practices will be employed to minimize/prevent impacts to fish habitat:

- The vibrating action and air flush associated with the operation of the probe results in a high degree of turbidity. When this level exceeds the criteria as outlined in the British Columbia Approved Water Quality Guidelines, the contractor will introduce containment methods that are designed to isolate the contaminated area and to prevent fish from entering the contaminated area. Silt curtains and netting are two methods that can provide the necessary protection.
- When supplying the aggregate to the probe, the contractor will ensure that spillage is prevented, thereby providing additional protection to fish habitat.
- An independent environmental consultant will be used to monitor turbidity levels.

7)-Underwater Drilling and Blasting

When performing underwater drilling and blasting the following Best Management Practices will be employed to minimize/prevent impacts to fish habitat:

Underwater Drilling

- Generally, drilling underwater is a process that has very little impact on fish or fish habitat. The procedure does not generate shock waves.
- Contractors will ensure that all attachments (hydraulic connections and couplings) are in good operating order and inspected prior to the start of every day. Spill kits and containment booms must be maintained on-site in case of spills.
- Depending on soil conditions and the potential for turbidity, drill cuttings will be deposited adjacent to the operation, contained on the sea bed or pumped to the surface for deposit into containment skiffs or scows for land disposal when it is determined that the drill cuttings are unsuitable for return to the environment.

Underwater Blasting

Contractors required to perform blasting underwater will provide the following protection to minimize/prevent impacts to fish habitat:

- Because of the potential for harmful shock waves resulting from a blast, a protection shield will surround the immediate blast area. This would be in the form of an air-induced bubble curtain, which has the primary purpose of absorbing the shock wave and a secondary purpose of preventing fish from entering the blast area.
- In order to protect against flying rock, mats (rubber) will be placed over the blasting area. The placement of the mats may also provide protection for any fish swimming in the immediate area.

• Monitoring of fish movement and concentrations will be conducted using a sounder to determine if fish herding or scaring techniques (seal bombs) can be utilized to reduce the presence of fish in the blast area.

8)-Cleaning out Pipe Piles:

When cleaning out pipe piles (i.e.: air lifting) the following Best Management Practices will be employed to minimize/prevent impacts to fish habitat:

- Generally, sediment contained in the pipe is will be pumped to the surface and processed through an approved containment system and disposed of at an approved landfill site.
- In exceptional circumstances, if the sediment is non-toxic, fish are not present in the area, and adjacent fish habitats are not a concern (contact DFO) it may be acceptable to:
- 1. Pump the sediment through a discharge tube and allowed it to settle in the immediate area with or without a silt curtain to contain the sediment.
- 2. Pump the sediment through a discharge tube and additional flex hosing and redirect it back to the base of the pile.

9) Containment of Concrete Residue and Water Run Off

When placing concrete in form work over or in water, the following Best Management Practices will be employed to minimize/prevent the impacts to fish habitat:

Pouring concrete

- Spills: When pouring concrete all spills of fresh concrete must be prevented. Concrete is toxic to fish due its high pH. If concrete is discharged from the transit mixer directly to the formwork or placed by wheelbarrow, proper sealed chutes must be constructed to avoid spillage. If the concrete is being placed with a concrete pump, all hose and pipe connections must be sealed and locked properly to ensure the lines will not leak or uncouple. Crews will ensure that concrete forms are not filled to overflowing.
- Sealing forms: All concrete forms will be constructed in a manner which will prevent fresh concrete or cement-laden water from leaking into the surrounding water.

Curing concrete

• When fresh water is used to cure concrete, the run off must be monitored for acceptable pH levels. If the pH levels are outside the allowable limits then the run off water must be contained and neutralized.

Grinding concrete

• When grinding cured concrete, the dust and fines entering the water must not exceed the allowable limits for suspended solids. When grinding green or incompletely cured concrete and the dust or fines are entering the water, pH

monitoring will be conducted to ensure allowable ranges are maintained. In the event that the levels are outside the acceptable ranges, preventative measures will be introduced. This may include introducing silt curtains to contain the solids and prevent fish from entering a contaminated area or constructing catch basins to recover the run off and neutralizing it prior to disposal.

Patching concrete

• Spills: When patching concrete, all spills must be contained and prevented from entering the water.

Washing hand tools, pumps and transit mixer

• All tools, pumps, pipes, hoses and trucks used for finishing, placing or transporting fresh concrete must be washed off in such a way as to prevent the wash water and excess concrete from entering the marine environment. The wash water will be contained and disposed of upland in an environmentally acceptable manner.

Whenever there is the possibility of contaminants entering water, the contractor will monitor pH levels to ensure acceptable levels.

APPENDIX

Fisheries and Oceans Canada

Contact List

Name

Telephone No. Fax. No.

NOTICE OF PROJECT

To: Fisheries and Oceans Canada

Attention:

Fax. No.:

From: "Contractor"

Telephone No.:

Fax. No.:

Representative:

Please be advised of the following marine/pile driving project:

Project Name:

Project Location:

Project Manager/Superintendent:

Project Telephone No.:

Project Fax. No.:

Project commencement date: