

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Certificate	of Analysis	
RESCAN ENVIRONM	IENTAL SERVICES		
SIXTH FLOOR 1111 WEST HASTING VANCOUVER BC V			30-OCT-08 05:59 PM Revision: 1
Lab Work Order #:	L691076	Date Received	: 03-OCT-08
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	MORRISON 0793-001-15		
Other Information:			
Comments: October remain	[•] 30/08- Saturated Paste Extractables data adde unchanged.	d to L691076-2, -3, -4, -12, -16, -17, -18, -20 and	1-21. All other results
	GLENYSS WEEKS Account Manager		

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L691076 CONTD PAGE 2 of 14 30-OCT-08 17:56

ALS LABORATORY GROUP ANALYTICAL REPORT

Selenium (Se) (mg/kg)

	Sample ID Description Sampled Date Sampled Time Client ID	L691076-1 DH07-3 SEP 12	L691076-2 DH07-9 SPT 10-	L691076-3 DH07-6 SPT 11-	L691076-4 DH07-5 SPT 10-	L691076-5 DH07-7 SPT 10-
Grouping	Analyte	-69ft	64ft	74ft	49ft	64ft
SOIL						
Physical Tests	% Moisture (%)	-	10.1	9.32	7.92	
	рН (рН)	7.94	8.18	8.22	8.24	8.15
Particle Size	% Gravel (>2mm) (%)	15	18	22	15	16
	% Sand (2.0mm - 0.063mm) (%)	55	36	39	50	37
	% Silt (0.063mm - 4um) (%)	20	24	20	23	25
	% Clay (<4um) (%)	11	22	18	13	22
Organic / Inorganic Carbon	CaCO3 Equivalent (%)	4.3	4.3			
	Inorganic Carbon (%)	0.49	0.49			
Saturated Paste Extractables	Calcium (Ca) (mg/kg)		76.8	77.2	83.7	
	Chloride (Cl) (mg/kg)		4.1	4.8	<20	
	Conductivity (dS/m)	2.39	1.28	1.36	1.59	1.42
	Magnesium (Mg) (mg/kg)		18.6	19.1	24.5	
	Potassium (K) (mg/kg)		<9.0	<9.0	<7.0	
	SAR (SAR)		1.96	2.34	1.59	
	% Saturation (%)		45.7	46.7	36.1	
	Sodium (Na) (mg/kg)	_	50.0	60.7	38.8	
Metals	Aluminum (Al) (mg/kg)	16600	17900	18700	14000	18800
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	17.5	24.9	19.0	16.4	25.8
	Barium (Ba) (mg/kg)	128	184	160	117	208
	Beryllium (Be) (mg/kg)	0.55	0.70	0.67	0.55	0.71
	Bismuth (Bi) (mg/kg)	<20	<20	<20	<20	<20
	Cadmium (Cd) (mg/kg)	0.64	0.61	<0.50	<0.50	0.52
	Calcium (Ca) (mg/kg)	17100	18500	21700	19500	19300
	Chromium (Cr) (mg/kg)	18.6	24.4	22.5	16.4	23.7
	Cobalt (Co) (mg/kg)	10.5	12.8	12.3	9.0	12.4
	Copper (Cu) (mg/kg)	26.9	32.1	30.5	22.9	32.6
	Iron (Fe) (mg/kg)	29900	36200	35600	29800	36500
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Lithium (Li) (mg/kg)	14.6	15.2	15.9	11.5	15.9
	Magnesium (Mg) (mg/kg)	6000	8670	9380	6400	8940
	Manganese (Mn) (mg/kg)	826	962	957	758	1050
	Mercury (Hg) (mg/kg)	0.123	0.111	0.107	0.153	0.142
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	19.0	26.0	22.9	16.2	25.0
	Phosphorus (P) (mg/kg)	690	663	632	638	649
	Potassium (K) (mg/kg)	920	1430	1370	1130	1660

<2.0

<2.0

<2.0

<2.0

<2.0

L691076 CONTD.... PAGE 3 of 14

I	30-OCT-08 17:56

	Sample ID Description Sampled Date Sampled Time Client ID	L691076-6 DH07-5 SPT 12-	L691076-7 DH07-3 SPT 5	L691076-8 DH07-3 SPT	L691076-9 DH07-5 SPT 8-	L691076-10 DH07-2 SPT 13
Grouping	Analyte	59ft	24ft	SPT 9-44ft	39ft	
SOIL						
Physical Tests	% Moisture (%)	-				
	рН (рН)	8.12	8.00	8.08	7.98	8.00
Particle Size	% Gravel (>2mm) (%)	6	56	7	43	27
	% Sand (2.0mm - 0.063mm) (%)	16	37	44	37	33
	% Silt (0.063mm - 4um) (%)	32	4	30	11	20
	% Clay (<4um) (%)	46	3	20	9	19
Organic /	CaCO3 Equivalent (%)	3.4	1.1			
Inorganic Carbon	Inorganic Carbon (%)	0.38	0.10			
Saturated Paste Extractables	Calcium (Ca) (mg/kg)		0.10			
	Chloride (Cl) (mg/kg)					
	Conductivity (dS/m)	0.827	0.826	0.818	2.05	1.06
	Magnesium (Mg) (mg/kg)					
	Potassium (K) (mg/kg)					
	SAR (SAR)					
	% Saturation (%)					
	Sodium (Na) (mg/kg)					
Metals	Aluminum (Al) (mg/kg)	29700	18900	17500	18100	18300
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	14.0	20.7	16.8	15.7	23.9
	Barium (Ba) (mg/kg)	154	221	187	129	159
	Beryllium (Be) (mg/kg)	0.85	0.71	0.67	0.63	0.75
	Bismuth (Bi) (mg/kg)	<20	<20	<20	<20	<20
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	0.50	<0.50	<0.50
	Calcium (Ca) (mg/kg)	18300	14900	11500	23700	14700
	Chromium (Cr) (mg/kg)	34.2	23.9	24.3	16.0	21.5
	Cobalt (Co) (mg/kg)	19.5	12.4	13.0	9.3	12.2
	Copper (Cu) (mg/kg)	51.6	31.3	32.9	25.0	32.5
	Iron (Fe) (mg/kg)	40900	35500	35600	34900	39600
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Lithium (Li) (mg/kg)	22.9	14.7	13.7	16.6	14.8
	Magnesium (Mg) (mg/kg)	12200	7490	6660	8680	7340
	Manganese (Mn) (mg/kg)	684	831	839	898	1020
	Mercury (Hg) (mg/kg)	0.110	0.159	0.060	0.078	0.118
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	35.6	25.9	27.8	14.1	23.6
	Phosphorus (P) (mg/kg)	596	618	670	625	639
	Potassium (K) (mg/kg)	1570	1660	1280	1340	1500
	Selenium (Se) (mg/kg)	<4.0	<2.0	<2.0	<2.0	<2.0

L691076 CONTD.... PAGE 4 of 14

ALS LABORATORY GROUP ANALYTICAL REPORT

L691076-11

L691076-12

Sample ID

;	L REPO	RT ^{30-OCT}	-08 17:56
	L691076-13	L691076-14	L691076-15

Grouping	Sample ID Description Sampled Date Sampled Time Client ID Analyte	L691076-11 DH07-3 SPT 8- 39ft	L691076-12 DH07-2 SPT 11	L691076-13 DH07-3 SPT 6- 29ft	L691076-14 DH07-5 SPT 6 29ft	L691076-15 DH07-5 SPT 5- 24ft
SOIL	лицую					
	0/ Mainture (0/)		40.0			
Physical Tests	% Moisture (%)	0.04	13.0	0.05	7.00	0.00
Doutiala Cina	pH (pH)	8.04	8.30	8.05	7.98	8.09
Particle Size	% Gravel (>2mm) (%)	14	24	13	28	47
	% Sand (2.0mm - 0.063mm) (%)	41	36	36	40	44
	% Silt (0.063mm - 4um) (%)	26	20	28	18	5
Oursenie /	% Clay (<4um) (%)	19	20	23	14	3
Organic / Inorganic Carbon	CaCO3 Equivalent (%)	2.8				
Saturated Paste	Inorganic Carbon (%)	0.30	24.0			
Extractables	Calcium (Ca) (mg/kg)		34.8			
	Chloride (Cl) (mg/kg)		4.4			
	Conductivity (dS/m)	0.977	0.625	0.694	1.42	1.51
	Magnesium (Mg) (mg/kg)		7.30			
	Potassium (K) (mg/kg)		<10			
	SAR (SAR)		2.02			
	% Saturation (%)		53.4			
	Sodium (Na) (mg/kg)		36.7			
Metals	Aluminum (Al) (mg/kg)	18100	20300	20600	19100	18600
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	19.3	22.4	22.3	16.6	20.8
	Barium (Ba) (mg/kg)	233	180	218	136	132
	Beryllium (Be) (mg/kg)	0.68	0.76	0.76	0.63	0.68
	Bismuth (Bi) (mg/kg)	<20	<20	<20	<20	<20
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Calcium (Ca) (mg/kg)	13800	15100	18000	22400	23400
	Chromium (Cr) (mg/kg)	25.8	21.9	25.6	15.9	18.6
	Cobalt (Co) (mg/kg)	12.1	12.2	12.9	9.4	10.5
	Copper (Cu) (mg/kg)	31.0	33.1	32.8	31.3	27.6
	Iron (Fe) (mg/kg)	35700	38500	37700	34400	36300
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Lithium (Li) (mg/kg)	14.1	15.7	16.1	16.4	16.3
	Magnesium (Mg) (mg/kg)	7020	7380	8060	8070	8380
	Manganese (Mn) (mg/kg)	839	927	922	829	869
	Mercury (Hg) (mg/kg)	0.172	0.138	0.139	0.108	0.092
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	26.4	24.0	27.3	14.5	17.1
	Phosphorus (P) (mg/kg)	639	669	655	590	656
	Potassium (K) (mg/kg)	1410	1820	1830	1550	1520
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0

L691076 CONTD PAGE 5 of 14 30-OCT-08 17:56

ALS LABORATORY GROUP ANIAL VTIC . .

Sample ID

Description Sampled Date

OUP ANALYTICAL REPORT 30-0C1-08 17:38									
L691076-16	L691076-17	L691076-18	L691076-19	L691076-20					
DH07-4 SPT 5- 24ft	DH07-4 SPT 6- 29ft	DH07-2 SPT 9	DH07-4 SPT 8- 39ft	DH07-2 SPT 5					
11.9	11.1	10.2		7.92					
8.00	8.07	8.04	8.01	8.10					
11	13	25	10	13					
37	35	38	48	34					
24	25	10	21	25					

	Sampled Date Sampled Time					
Grouping	Client ID Analyte	DH07-4 SPT 5- 24ft	DH07-4 SPT 6- 29ft	DH07-2 SPT 9	DH07-4 SPT 8- 39ft	DH07-2 SPT 5
SOIL						
Physical Tests	% Moisture (%)	11.9	11.1	10.2		7.92
	рН (рН)	8.00	8.07	8.04	8.01	8.10
Particle Size	% Gravel (>2mm) (%)	11	13	25	10	13
	% Sand (2.0mm - 0.063mm) (%)	37	35	38	48	34
	% Silt (0.063mm - 4um) (%)	24	25	19	21	25
	% Clay (<4um) (%)	28	28	18	21	28
Organic /	CaCO3 Equivalent (%)	3.5		4.2		
Inorganic Carbon		0.0				
	Inorganic Carbon (%)	0.39		0.46		
Saturated Paste Extractables	Calcium (Ca) (mg/kg)	70.0	83.3	55.6		63.7
	Chloride (Cl) (mg/kg)	6.1	3.3	9.5		59.2
	Conductivity (dS/m)	1.09	1.18	0.827	1.09	1.15
	Magnesium (Mg) (mg/kg)	17.2	19.8	13.2		35.0
	Potassium (K) (mg/kg)	<10	<10	<10		<10
	SAR (SAR)	1.42	1.56	1.46		0.85
	% Saturation (%)	48.9	53.6	54.1		52.1
	Sodium (Na) (mg/kg)	35.9	44.7	34.2		24.5
Metals	Aluminum (Al) (mg/kg)	20300	19100	18700	19500	19800
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	20.2	24.9	21.6	24.1	22.9
	Barium (Ba) (mg/kg)	185	184	164	179	203
	Beryllium (Be) (mg/kg)	0.76	0.74	0.71	0.72	0.74
	Bismuth (Bi) (mg/kg)	<20	<20	<20	<20	<20
	Cadmium (Cd) (mg/kg)	0.51	0.54	<0.50	0.52	<0.50
	Calcium (Ca) (mg/kg)	16200	13700	17000	14600	18200
	Chromium (Cr) (mg/kg)	25.7	23.0	20.9	25.6	24.5
	Cobalt (Co) (mg/kg)	13.0	12.8	11.6	13.0	12.5
	Copper (Cu) (mg/kg)	34.3	32.2	30.9	32.9	33.7
	Iron (Fe) (mg/kg)	37800	37900	37400	37200	37200
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Lithium (Li) (mg/kg)	16.3	15.4	14.7	15.7	15.1
	Magnesium (Mg) (mg/kg)	8150	7790	7270	7920	8120
	Manganese (Mn) (mg/kg)	928	878	917	852	922
	Mercury (Hg) (mg/kg)	0.130	0.148	0.141	0.131	0.158
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	27.7	26.1	22.2	27.8	26.1
	Phosphorus (P) (mg/kg)	632	659	651	673	690
	Potassium (K) (mg/kg)	1700	1490	1650	1660	1770
	Selenium (Se) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0

L691076 CONTD.... PAGE 6 of 14 30-OCT-08 17:56

	Sample ID Description Sampled Date Sampled Time Client ID	L691076-21 TP08-RS4-9.0M	L691076-22 TP08-RS4-X1-	L691076-23 TP08-RS7-X1-	
Grouping	Analyte		7.5M	3.0M	
SOIL					
Physical Tests	% Moisture (%)	. 10.3			
	рН (рН)	8.57	8.25	5.03	
Particle Size	% Gravel (>2mm) (%)	35	21	56	
	% Sand (2.0mm - 0.063mm) (%)	30	36	35	
	% Silt (0.063mm - 4um) (%)	19	23	6	
	% Clay (<4um) (%)	15	20	2	
Organic / Inorganic Carbon	CaCO3 Equivalent (%)				
	Inorganic Carbon (%)				
Saturated Paste Extractables	Calcium (Ca) (mg/kg)	14.8			
	Chloride (Cl) (mg/kg)	4.8	· · · ·		
	Conductivity (dS/m)	0.411	0.363	0.644	
	Magnesium (Mg) (mg/kg)	5.59			
	Potassium (K) (mg/kg)	<10			
	SAR (SAR)	1.71			
	% Saturation (%)	48.2			
	Sodium (Na) (mg/kg)	21.1			
Metals	Aluminum (Al) (mg/kg)	19000	18800	17000	
	Antimony (Sb) (mg/kg)	<10	<10	<10	
	Arsenic (As) (mg/kg)	14.0	14.7	77.1	
	Barium (Ba) (mg/kg)	268	232	98.1	
	Beryllium (Be) (mg/kg)	0.75	0.74	0.77	
	Bismuth (Bi) (mg/kg)	<20	<20	<20	
	Cadmium (Cd) (mg/kg)	<0.50	0.64	<0.50	
	Calcium (Ca) (mg/kg) Chromium (Cr) (mg/kg)	12900	11500	822	
	Cobalt (Co) (mg/kg)	28.5	28.7	42.3	
		14.2	14.1 27.7	21.0	
	Copper (Cu) (mg/kg) Iron (Fe) (mg/kg)	37.2	37.7	744	
	Lead (Pb) (mg/kg)	35700 <30	35900 <30	53400 70	
	Lithium (Li) (mg/kg)	<30 15.1	<30 15.1	11.9	
	Magnesium (Mg) (mg/kg)	7750	7670	2710	
	Magnesium (Mg) (mg/kg) Manganese (Mn) (mg/kg)	793	791	510	
	Manganese (Min) (mg/kg) Mercury (Hg) (mg/kg)	0.200	0.153	0.568	
	Molybdenum (Mo) (mg/kg) Nickel (Ni) (mg/kg)	<4.0	<4.0 36.0	18.1	
		36.3	36.9	70.2	
	Phosphorus (P) (mg/kg)	673	631	605	
	Potassium (K) (mg/kg)	1780	1770	1090	
	Selenium (Se) (mg/kg)	<2.0	<2.0	<4.0	

L691076 CONTD.... PAGE 7 of 14 30-OCT-08 17:56

ALS LABORATORY GROUP ANALYTICAL REPORT

		Sample ID Description Sampled Date Sampled Time Client ID	L691076-1 DH07-3 SEP 12	L691076-2 DH07-9 SPT 10-	L691076-3 DH07-6 SPT 11-	L691076-4 DH07-5 SPT 10-	L691076-5 DH07-7 SPT 10-
Grouping	Analyte		-69ft	64ft	74ft	49ft	64ft
SOIL							
Metals	Silver (Ag) (mg/kg)		. <2.0	<2.0	<2.0	<2.0	<2.0
	Sodium (Na) (mg/kg)		250	380	530	380	440
	Strontium (Sr) (mg/kg)		51.4	58.0	75.7	49.0	60.8
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Titanium (Ti) (mg/kg)		506	282	433	344	299
	Vanadium (V) (mg/kg)		52.2	62.9	61.6	47.9	65.0
	Zinc (Zn) (mg/kg)		98.9	135	103	81.8	123

L691076 CONTD

PAGE	8	of	14
30-OCT	-08	17:	56

		Sample ID Description Sampled Date Sampled Time Client ID	L691076-6 DH07-5 SPT 12-	L691076-7 DH07-3 SPT 5	L691076-8 DH07-3 SPT	L691076-9 DH07-5 SPT 8-	L691076-10 DH07-2 SPT 13
Grouping	Analyte		59ft	24ft	SPT 9-44ft	39ft	
SOIL							
Metals	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Sodium (Na) (mg/kg)		1250	330	320	570	360
	Strontium (Sr) (mg/kg)		111	65.4	58.7	59.9	63.8
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Titanium (Ti) (mg/kg)		306	267	235	427	164
	Vanadium (V) (mg/kg)		93.9	60.4	60.2	54.4	59.1
	Zinc (Zn) (mg/kg)		99.6	96.8	96.0	98.8	103

L691076 CONTD.... PAGE 9 of 14 30-OCT-08 17:56

ALS LABORATORY GROUP ANALYTICAL REPORT

Grouping SOIL Metals

	Sample ID Description Sampled Date Sampled Time	L691076-11	L691076-12	L691076-13	L691076-14	L691076-15
Analyte	Client ID	DH07-3 SPT 8- 39ft	DH07-2 SPT 11	DH07-3 SPT 6- 29ft	DH07-5 SPT 6 29ft	DH07-5 SPT 5- 24ft
Analyte						
Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
Sodium (Na) (mg/k		340	390	470	470	570
Strontium (Sr) (mg/		69.5	62.5	67.3	52.0	51.2
Thallium (TI) (mg/kg		<1.0	<1.0	<1.0	<1.0	<1.0
Tin (Sn) (mg/kg)	5,	<5.0	<5.0	<5.0	<5.0	<5.0
Titanium (Ti) (mg/k	a)	239	216	221	376	292
Vanadium (V) (mg/		60.3	62.3	63.9	53.2	57.4
Zinc (Zn) (mg/kg)		93.4	103	102	93.8	101

L691076 CONTD.... PAGE 10 of 14 30-OCT-08 17:56

Sampled Date Sampled Time Client ID Client ID DH07-4 SPT 5- 24ft DH07-2 SPT 9 DH07-4 SPT 5- 38ft Grouping Analyte 24ft DH07-4 SPT 5- 24ft DH07-4 SPT 5- 24ft DH07-4 SPT 5- 24ft DH07-4 SPT 5- 29ft DH07-4 SPT 5- 29ft </th <th>DH07-2 SPT 5 <2.0 310 65.0 <1.0 <5.0 186 62.2</th>	DH07-2 SPT 5 <2.0 310 65.0 <1.0 <5.0 186 62.2
SOIL <th>310 65.0 <1.0 <5.0 186</th>	310 65.0 <1.0 <5.0 186
Metals Silver (Ag) (mg/kg) <2.0	310 65.0 <1.0 <5.0 186
Sodium (Na) (mg/kg) 370 400 370 390 Strontium (Sr) (mg/kg) 67.5 66.6 60.1 64.3 Thallium (Tl) (mg/kg) <1.0 <1.0 <1.0 <1.0 Tin (Sn) (mg/kg) <5.0 <5.0 <5.0 <5.0 Titanium (Ti) (mg/kg) 175 152 180 170 Vanadium (V) (mg/kg) 63.2 60.7 58.9 61.5	310 65.0 <1.0 <5.0 186
Strontium (Sr) (mg/kg) 67.5 66.6 60.1 64.3 Thallium (Tl) (mg/kg) <1.0 <1.0 <1.0 <1.0 Tin (Sn) (mg/kg) <5.0 <5.0 <5.0 <5.0 Titanium (Ti) (mg/kg) 175 152 180 170 Vanadium (V) (mg/kg) 63.2 60.7 58.9 61.5	65.0 <1.0 <5.0 186
Thallium (Tl) (mg/kg) <1.0	<1.0 <5.0 186
Tin (Sn) (mg/kg) <5.0	<5.0 186
Titanium (Ti) (mg/kg)175152180170Vanadium (V) (mg/kg)63.260.758.961.5	186
Vanadium (V) (mg/kg) 63.2 60.7 58.9 61.5	
	62.2
Zinc (Zn) (mg/kg) 101 104 105 102 Image: Sinc (Zn) (mg/kg) Image: Sinc (Zn) (mg/kg) Image: Sinc (Zn) (mg/kg) Image: Sinc (Zn) (mg/kg) Image: Sinc (Zn) (mg/kg) Image: Sinc (Zn) (mg/kg) Image: Sinc (Zn) (mg/kg) Image: Si	
	96.5

L691076 CONTD.... PAGE 11 of 14 30-OCT-08 17:56

Sample Comments

Additional Comments for Sample Listed:

Methods Listed (if applicable):

Samplenum

Matrix

Report Remarks

L691076 CONTD PAGE 12 of 14 30-OCT-08 17:56

ALS Test Code Matrix Test Description Analytical Method Reference(Based On) C-INORG-SK Soil Inorganic Carbon / Calcium Carbonate SSSA (1996) P455-456 When carbonates are decomposed with acid in an open system, carbon dioxide is released to the atmosphere. The decrease in sample weight resulting from CO2 loss is proportional to the carbonate content of the soil. Reference Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5 **CL-PASTE-IC-VA** Soil Chloride in paste by IC SOIL SAMPLING AND METHODS OF ANALYSIS This analysis is adapted from the methods outlined in "Soil Sampling and Methods of Analysis" by M. Carter. In summary, 200 to 500 grams of sample is extracted for a minimum of 4 hours with an amount of deionized water as required to create a saturated paste. The sample is then filtered or centrifuged and decanted to produce an extract that is ready for analysis. **EC-PASTE-VA** Soil Conductivity of Soil AS PER METHODOLOGY This analysis is adapted from the methods outlined in "Soil Sampling and Methods of Analysis" by M. Carter. In summary, 200 to 500 grams of sample is extracted for a minimum of 4 hours with an amount of deionized water as required to create a saturated paste. The sample is then filtered or centrifuged and decanted to produce an extract that is ready for analysis. HG-CSR-CVAFS-VA Soil CVAFS Hg in Soil by CSR SALM BCMELP CSR SALM Method 8 This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series). Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment. MET-CSR-FULL-ICP-VA Soil Metals in Soil by ICPOES (CSR SALM) BCMELP CSR SALM METHOD 8 This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of spectrophotometry (EPA Method 6010B). mobile in the environment. **MOISTURE-VA** Soil ASTM METHOD D2794-00 Moisture content This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours. **MOISTURE-VA** ASTM METHOD D2794-00 Soil This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours. **PH-1:2-VA** Soil BC WLAP METHOD: PH, ELECTROMETRIC, SOIL CSR pH by 1:2 Water Leach

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B

Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually

Methods Listed (if applicable):

ALS Test Code Matrix Test Description Analytical Method Reference(Based On)	
---	--

Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (10 mesh /2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PSA-PIPET+GRAVEL-SK Soil Particle size - Sieve

Particle size - Sieve and Pipette

FORESTRY CANADA (1991) P. 46-48 MOD

Particle size analysis involves the measurement of the proportions of the various primary soil particle sizes (ie. clay < 0.004 mm, silt 0.004-0.063 mm, sand 0.063-2.0 mm and gravel > 2.0 mm). In this method, the gravel and sand portions are determined by sieving, while the clay portion is determined by sedimentation using Stokes Law, which relates the radius of the particles to the velocity of the sedimentation in water. Silt is calculated as 100% - (sand% + clay%)

Pretreatment of the soil with Calgon (sodium hexametaphosphate) is used to ensure the complete dispersion of the primary soil particles. Additional pretreatment may be necessary to remove cementing materials such as CaCO3 and organic matter.

Reference

Y.P. Kalra, and D.G. Maynard, 1991. Methods Manual For Forest Soil and Plant Analysis, Northwest Region. Forestry Canada (modified sand, silt and clay size ranges)

SAR-CALC-MGKG-ICP- Soil

Saturated Paste Extraction (ICPOES)

BCMELP/EPA SW-846 6010B

VA Saturated paste sediment extracts are analyzed for metals by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B). Reported metals results have been converted into milligrams per dry kilogram. Sodium Adsorption Ratio (SAR) is calculated from the Sodium, Calcium, and Magnesium concentrations in the saturated paste extract of a sediment sample. The SAR calculation is described in "Soil Sampling and Methods of Analysis" by M. Carter.

TL-CSR-MS-VA

Soil ICPMS TI in Soil by CSR SALM

BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SK	ALS LABORATORY GROUP - SASKATOON, SASKATCHEWAN, CANADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in enviromental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Resco Website: www E-mail: rescan	@rescan.com	Reso 6 th F Vano Tel:	loor, 1111 couver, B. (604) 689-	West Has	Services Ltd. tings Street 3 (604) 687-4277	Yellowkn Rescan M Suite 908 Yellowkn Tel: (867	lorthern -5201 5 ife, NT) 920-20	Oper O th Av X1A 3 90 Fa	enue S9 ix: (86		2015		Seattle, \	Consulta 00,1001 / NA 9815	ourth Av 4, USA	enue Plaza 206) 382-96	
	СН	AI	N	0	F C	US	Т (0	D	Y		R	EC	; 0		D	
PROJECT N	AME:	RISOR	2		PROJECT #:	1-15				100	12	3/3	1_1	/	aporator	y Contact:	
	Kach	R ENGIN	EERS: (<i>Pi</i>	1	and Sign)	4 12	NUMBER OF CONTAINERS:	/	Her .	and	200	11/20/	1	Labo	ratory Ad	dress: LA	BS
STATION NUMBER	DATE	TIME	COMP. SAMPLE	GRAB SAMPLE	SAMPLE IDENTIFIC (DEPTH, REPLIC			14	1/2	5/3	1.0	1		an Conta	chm	tt	
DHOT-3	501.12-69	++						1	1	~	1		1001	1 -			
DHOT-A	CAE 10-6	414				4		1	1	V	1				_		
DHO7-6	GOT 11-1						190	1	1		1		-				
DH07-5	5 501 10-	- 494	-					1	1		1						-
PHOT-7	SP1 10-1	6YIL	-					1	1	SA	1				-		
2107-5	505 17-	.595	t					1	1	V	1						
H01-3	SPT 5-	24 44						1	1	V	1				_		
DHOT-3	SPT9-	445.	t				-	/	1		1				_		
Delay-	SPI 8-	39.44						1	1		1				-		-
DHOT-2	2 587 13							1	1	1.000	1						1.
150107-	3 SPT 8	-39f	t.					/	1	V	1						
2 DHOL	2-SPT 11-						1000	1	1	1	1			_			
30107-	3 5116	29+	+			- 14		/	1		1						
D107-	S SMG	295	t				1	/	1		1				_		
5 DHO7-5	5 601 5	. 24 +	t					/	1	1 mart	1				-		
9 DHOL-	4 SMS	- 246	+t				-	1	1	4	1						
- ford	U SPT	5 -2	944					/	1	1	1			_			
TOHOT .	2 GPT	9					-	/	1	2	1						
\$ 2.11 51	4 SPT	8-3	971	1				/	1	-	1			-			
DHO7	-2 507	5					-	/	1		1,						
TP08	-R54-	9.0 m				-		/	1		1						
Received by:			Date.	Time	Relinquished by: Company:	a la de	D/M	ate/Time	e	Routine	Analy:	sis: D	Rush A	nalysis:			
Company: Name:	(Print and Sign)		U/M/Y		Company: File D	Ders	/ / /	1		Remark	s: 110	ase	webst				в сору
Received by:				Time	Received for Laboratory	by:	D	ate/Tim	127	Fra	eKo	ne	DUIEN	3	0323		
Company: Name:			D/M/Y	1	Company: Name: ZCA		och	38"	. BL	× SC	Lear	6.	9.00	-, 01	0360	Page 1	2
AND COLOR	(Print and Sign)		11		in the second se												

	v.rescan.com	Reso 6 th F Vano Tel:	loor, 1111 couver, B (604) 689	onmental West Ha .C. V6E 2	Services Ltd. Resc stings Street Suite J3 Yello c: (604) 687-4277 Tel: (wknife Offi an Nosther 908-5201 (wknife, NT (867) 920-20	n Oper 50 th Av X1A 3 090 Fa	enue \$9 x: (86		-2015	-	Seattle Office: LIGKO76 Rescan Consultants Inc. Suite 3200,1001 Fourth Avenue Plaza Seattle, WA 98154, USA Tel: (206) 726-2145 Fax: (206) 382-9648
PROJECT N				0	F CUS		Q	D	Y	Y	R	ECORD Laboratory Contact:
	NTISTS AND/C		EERS: (P	rint Name		NUMBER OF CONTAINERS:		-	3	300	il il	ALS LABS
STATION NUMBER	DATE	TIME	COMP. SAMPLE	GRAB	SAMPLE IDENTIFICATION (DEPTH, REPLICATE)	0	10	The	Ye	7.1	4	Rescan Contact:
TO DE	- PSU-X	1-7	Em	a d'			1	7		1		prog. and the
TPO	8-257	- M-	3:01	n			1	/		/		
3		4					-					
5	J. A.L										-	
6					1							
7					/							
8	and the second			/								
10			-	1-1-3			1		-		E	
11		-		/			1				T	
12			/								4	
13		1	/								1	
14			/					-	-	-	>	
15				-		-		-			-	
17		1			9		1					
18		/										
19	1											
20							-		-			
21 Received by Company:	/:		Date D/M/Y	e/Time	Relinquished by: Company:		Date/Tim	e	Routin	e Ariāly	sis: Ja	Rush Analysis:
Name:	(Print and Sign)		11		Name: (Print and Sign)		1	-	Remar	ks: P	lacis	e woish 72mm LAB COPY
Received by Company:			Date D/M/Y	e/Time	Received for Laboratory by: Company:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date/Tim		tre	retri	ons	Joriswy Silt-05-2000 Chy. L2000 Page 2 of 25
Name:	(Print and Sign)		111		Name: ZU (Print and Sign)	1		1.4	XSC	ree.	1.5-	amo, chen, Lanneage 2 of 2

APPENDIX B2 ALS METHODS AND RESULTS: L691076 (TEST PITS)

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Certificate of An	alvsis
RESCAN ENVIRONM		
ATTN: ROLF SCHM	ТТ	
SIXTH FLOOR 1111 WEST HASTING VANCOUVER BC V		Reported On: 10-NOV-08 11:38 AM Revision: 3
Lab Work Order #:	L686442	Date Received: 23-SEP-08
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	MORRISON-SOIL-0793-001-15 F 33667, F 33668	
Other Information:		
Comments: Nov 3/0	8- Saturated Paste Extractables added to samples L6864	42-1 and L686442-9. All other results remain unchanged.

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L686442 CONTD.... PAGE 2 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L686442-1	L686442-2	L686442-3	L686442-4	L686442-5
	Sampled Date Sampled Time	08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08
	Client ID	RS1-1	RS2-1	RS2-2	RS3-0.8	RS3-2
Grouping	Analyte					
SOIL						
Physical Tests	Conductivity (dS/m)	<0.020	<0.020	<0.020	<0.020	0.063
	% Moisture (%)	11.3	12.7	8.34	7.21	10.2
	рН (рН)	6.75	6.02	6.70	6.55	8.06
Particle Size	% Gravel (>2mm) (%)	10	37	10	25	6
	% Sand (2.0mm - 0.063mm) (%)	28	22	66	58	30
	% Silt (0.063mm - 4um) (%)	31	26	19	15	43
	% Clay (<4um) (%)	31	16	5	3	21
Organic /	CaCO3 Equivalent (%)			<0.7	<0.7	2.8
Inorganic Carbon	Inorgania Carbon (%)			-0.00	-0.00	0.00
Saturated Paste	Inorganic Carbon (%)	2.02		<0.09	<0.09	0.29
Extractables	Calcium (Ca) (mg/kg)	2.82				
	Chloride (Cl) (mg/kg)	2.1				
	Conductivity (dS/m)	0.0099				
	Magnesium (Mg) (mg/kg)	0.896				
	Potassium (K) (mg/kg)	<1.0				
	SAR (SAR)	1.01				
	% Saturation (%)	35.9				
	Sodium (Na) (mg/kg)	4.53				
Metals	Aluminum (Al) (mg/kg)	18400	17700	13400	15500	16400
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	19.4	31.8	21.2	19.5	33.2
	Barium (Ba) (mg/kg)	305	281	164	168	271
	Beryllium (Be) (mg/kg)	0.84	0.76	0.62	0.64	0.68
	Bismuth (Bi) (mg/kg)	<20	<20	<20	<20	<20
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Calcium (Ca) (mg/kg)	5210	3820	4500	4660	17900
	Chromium (Cr) (mg/kg)	31.7	30.4	19.4	22.0	27.8
	Cobalt (Co) (mg/kg)	15.6	15.1	11.2	11.9	15.5
	Copper (Cu) (mg/kg)	43.2	624	42.4	39.6	330
	Iron (Fe) (mg/kg)	39900	37600	33600	35100	34800
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Lithium (Li) (mg/kg)	13.6	11.9	10.6	12.0	12.0
	Magnesium (Mg) (mg/kg)	6210	5490	5510	6890	6470
	Manganese (Mn) (mg/kg)	1200	994	947	903	920
	Mercury (Hg) (mg/kg)	0.148	0.218	0.156	0.0875	0.195
	Molybdenum (Mo) (mg/kg)	<4.0	4.1	<4.0	<4.0	<4.0
	Nickel (Ni) (mg/kg)	44.2	37.3	27.0	27.0	40.1
	Phosphorus (P) (mg/kg)	616	661	626	533	731
	Potassium (K) (mg/kg)	1010	1220	790	750	1520

L686442 CONTD.... PAGE 3 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L686442-6	L686442-7	L686442-8	L686442-9	L686442-10
	Sampled Date Sampled Time	08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08
	Client ID	RS3-3	RS4-1	RS4-2	RS4-3	RS5-1
Grouping	Analyte					
SOIL						
Physical Tests	Conductivity (dS/m)	0.065	<0.020	<0.020	0.070	<0.020
	% Moisture (%)	9.95	16.9	14.1	11.6	12.0
	рН (рН)	8.12	6.29	6.96	8.06	5.30
Particle Size	% Gravel (>2mm) (%)	12	28	13	23	
	% Sand (2.0mm - 0.063mm) (%)	31	50	48	29	
	% Silt (0.063mm - 4um) (%)	36	16	26	28	
	% Clay (<4um) (%)	21	7	13	20	
Organic / Inorganic Carbon	CaCO3 Equivalent (%)	2.6			3.5	
	Inorganic Carbon (%)	0.26			0.38	
Saturated Paste Extractables	Calcium (Ca) (mg/kg)				9.90	
	Chloride (CI) (mg/kg)				<3.0	
	Conductivity (dS/m)				0.0656	
	Magnesium (Mg) (mg/kg)				4.90	
	Potassium (K) (mg/kg)				<2.0	
	SAR (SAR)				0.72	
	% Saturation (%)				56.5	
	Sodium (Na) (mg/kg)				8.3	
Metals	Aluminum (Al) (mg/kg)	15800	17500	17100	18000	4810
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	77.5	22.4	20.0	17.8	48.2
	Barium (Ba) (mg/kg)	306	206	252	431	85.9
	Beryllium (Be) (mg/kg)	0.66	0.73	0.75	0.76	0.58
	Bismuth (Bi) (mg/kg)	<20	<20	<20	<20	<20
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	0.60	<0.50
	Calcium (Ca) (mg/kg)	13600	3300	3550	19900	908
	Chromium (Cr) (mg/kg)	30.5	24.5	24.6	26.2	39.9
	Cobalt (Co) (mg/kg)	16.7	13.0	13.2	20.6	36.6
	Copper (Cu) (mg/kg)	491	31.3	35.7	42.0	1910
	Iron (Fe) (mg/kg)	34800	37000	36400	36700	58600
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Lithium (Li) (mg/kg)	11.7	13.5	13.5	13.6	<2.0
	Magnesium (Mg) (mg/kg)	7010	6260	5560	6780	495
	Manganese (Mn) (mg/kg)	927	911	868	1360	483
	Mercury (Hg) (mg/kg)	0.196	0.0845	0.137	0.254	0.320
	Molybdenum (Mo) (mg/kg)	<4.0	<4.0	<4.0	<4.0	31.6
	Nickel (Ni) (mg/kg)	42.2	38.5	35.7	46.5	44.5
	Phosphorus (P) (mg/kg)	741	581	575	736	1280
	Potassium (K) (mg/kg)	1640	810	980	1580	640

L686442 CONTD.... PAGE 4 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date	L686442-11 08-SEP-08	L686442-12 08-SEP-08	L686442-13 08-SEP-08	L686442-14 08-SEP-08	L686442-15 08-SEP-08
	Sampled Time Client ID	RS5-2	RS6-1	RS6-2	RS7-1	RS7-2
Grouping	Analyte	R00-2	K30-1	K30-2	K37-1	K37-2
SOIL	-					
Physical Tests	Conductivity (dS/m)	<0.020	<0.020	<0.020	<0.020	<0.020
r nyslour rests	% Moisture (%)	10.6	6.03	7.33	8.30	11.0
	pH (pH)	5.20	6.11	6.21	5.95	5.15
Particle Size	% Gravel (>2mm) (%)	5.20	0.11	0.21	33	21
	% Sand (2.0mm - 0.063mm) (%)				45	24
	% Silt (0.063mm - 4um) (%)				16	34
					7	22
Organia (% Clay (<4um) (%) CaCO3 Equivalent (%)				1	22
Organic / Inorganic Carbon						
	Inorganic Carbon (%)					
Saturated Paste Extractables	Calcium (Ca) (mg/kg)					
	Chloride (Cl) (mg/kg)					
	Conductivity (dS/m)					
	Magnesium (Mg) (mg/kg)					
	Potassium (K) (mg/kg)					
	SAR (SAR)					
	% Saturation (%)					
	Sodium (Na) (mg/kg)					
Metals	Aluminum (Al) (mg/kg)	4860	8560	9010	11300	14200
	Antimony (Sb) (mg/kg)	<10	<10	<10	<10	<10
	Arsenic (As) (mg/kg)	85.4	20.4	15.7	67.6	45.1
	Barium (Ba) (mg/kg)	52.5	711	781	133	182
	Beryllium (Be) (mg/kg)	0.66	0.51	0.54	0.83	0.76
	Bismuth (Bi) (mg/kg)	<20	<20	<20	<20	<20
	Cadmium (Cd) (mg/kg)	<0.50	<0.50	<0.50	<0.50	<0.50
	Calcium (Ca) (mg/kg)	1130	2180	2570	1630	1980
	Chromium (Cr) (mg/kg)	44.7	25.0	26.9	26.5	26.8
	Cobalt (Co) (mg/kg)	54.4	14.0	16.7	28.8	22.1
	Copper (Cu) (mg/kg)	2140	2860	2780	886	363
	Iron (Fe) (mg/kg)	72300	34100	36600	43900	41400
	Lead (Pb) (mg/kg)	<30	<30	<30	<30	<30
	Lithium (Li) (mg/kg)	<2.0	5.1	5.1	8.4	9.2
	Magnesium (Mg) (mg/kg)	402	4360	4820	4060	3770
	Manganese (Mn) (mg/kg)	1010	412	637	883	731
	Mercury (Hg) (mg/kg)	0.340	0.245	0.357	0.471	0.502
	Molybdenum (Mo) (mg/kg)	90.7	57.5	74.2	27.3	10.2
	Nickel (Ni) (mg/kg)	54.6	33.9	39.3	80.4	58.4
	Phosphorus (P) (mg/kg)	1450	781	802	757	602
	Potassium (K) (mg/kg)	660	1860	1630	870	840

L686442 CONTD.... PAGE 5 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	1	L686442-2	L686442-3	L686442-4	L686442-5
	Sampled Date Sampled Time		08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08
	Client ID	RS1-1	RS2-1	RS2-2	RS3-0.8	RS3-2
Grouping	Analyte					
SOIL						
Metals	Selenium (Se) (mg/kg)	<0.50	0.55	<0.50	<0.50	<0.50
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Sodium (Na) (mg/kg)	<200	<200	<200	<200	220
	Strontium (Sr) (mg/kg)	40.8	37.5	28.1	26.2	57.4
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Titanium (Ti) (mg/kg)	93.9	247	294	323	344
	Vanadium (V) (mg/kg)	65.8	63.8	56.7	61.9	60.3
	Zinc (Zn) (mg/kg)	105	96.8	91.9	91.1	95.4

L686442 CONTD.... PAGE 6 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description	L686442-6	L686442-7	L686442-8	L686442-9	L686442-10
	Sampled Date Sampled Time	08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08
Crowning	Client ID	RS3-3	RS4-1	RS4-2	RS4-3	RS5-1
Grouping	Analyte					
SOIL						
Metals	Selenium (Se) (mg/kg)	<0.50	<0.50	<0.50	<0.50	5.43
	Silver (Ag) (mg/kg)	<2.0	<2.0	<2.0	<2.0	<2.0
	Sodium (Na) (mg/kg)	<200	<200	<200	200	<200
	Strontium (Sr) (mg/kg)	54.5	27.5	36.6	73.0	20.1
	Thallium (TI) (mg/kg)	<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)	<5.0	<5.0	<5.0	<5.0	<5.0
	Titanium (Ti) (mg/kg)	359	204	149	123	13.5
	Vanadium (V) (mg/kg)	63.7	61.8	59.7	60.7	77.4
	Zinc (Zn) (mg/kg)	96.0	94.7	90.3	100	53.2

L686442 CONTD.... PAGE 7 of 10

ALS LABORATORY GROUP ANALYTICAL REPORT

	•	Sample ID Description ampled Date	L686442-11	L686442-12	L686442-13	L686442-14	L686442-15
		ampled Time	08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08	08-SEP-08
		Client ID	RS5-2	RS6-1	RS6-2	RS7-1	RS7-2
Grouping	Analyte						
SOIL							
Metals	Selenium (Se) (mg/kg)		5.12	0.75	0.90	0.66	1.07
	Silver (Ag) (mg/kg)		<2.0	<2.0	<2.0	<2.0	<2.0
	Sodium (Na) (mg/kg)		<200	<200	<200	<200	<200
	Strontium (Sr) (mg/kg)		26.2	30.7	39.5	17.6	27.5
	Thallium (TI) (mg/kg)		<1.0	<1.0	<1.0	<1.0	<1.0
	Tin (Sn) (mg/kg)		<5.0	<5.0	<5.0	<5.0	<5.0
	Titanium (Ti) (mg/kg)		13.2	416	446	242	145
	Vanadium (V) (mg/kg)		82.8	48.8	50.8	55.8	54.0
	Zinc (Zn) (mg/kg)		81.2	77.6	80.5	103	86.7

L686442 CONTD.... PAGE 8 of 10 10-NOV-08 11:36

Additional Comments for Sample Listed: Samplenum Matrix **Report Remarks** Sample Comments Methods Listed (if applicable): ALS Test Code Matrix Test Description Analytical Method Reference(Based On) C-INORG-SK Soil Inorganic Carbon / Calcium Carbonate SSSA (1996) P455-456 When carbonates are decomposed with acid in an open system, carbon dioxide is released to the atmosphere. The decrease in sample weight resulting from CO2 loss is proportional to the carbonate content of the soil. Reference Loeppert, R.H. and Suarez, D.L. 1996. Gravimetric Method for Loss of Carbon Dioxide. P. 455-456 In: J.M. Bartels et al. (ed.) Methods of soil analysis: Part 3 Chemical methods. (3rd ed.) ASA and SSSA, Madison, WI. Book series no. 5 **CL-PASTE-COLOR-VA** Soil Chloride in paste by Colourimetric SOIL SAMPLING AND METHODS OF ANALYSIS This analysis is adapted from the methods outlined in "Soil Sampling and Methods of Analysis" by M. Carter. In summary, 200 to 500 grams of sample is extracted for a minimum of 4 hours with an amount of deionized water as required to create a saturated paste. The sample is then filtered or centrifuged and decanted to produce an extract that is ready for analysis. **EC-LEACH-VA** Soil Conductivity on Soil leach (1:10, dS/m) BC MINISTRY OF ENERGY AND MINES Leachable Anions in Sediment/Soil Method analysis is carried out using a leaching procedure which involves the gentle tumbling of the sample in a specified leaching solution (typically deionized water) for a specific length of time. The resulting extract is then analysed using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode. **EC-PASTE-VA** Soil Conductivity of Soil AS PER METHODOLOGY This analysis is adapted from the methods outlined in "Soil Sampling and Methods of Analysis" by M. Carter. In summary, 200 to 500 grams of sample is extracted for a minimum of 4 hours with an amount of deionized water as required to create a saturated paste. The sample is then filtered or centrifuged and decanted to produce an extract that is ready for analysis. **HG-CCME-CVAFS-VA** Soil CVAFS Hg in Soil (CCME) CCME This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic fluorescence spectrophotometry (EPA Method 7000 series). Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment. MET-CSR-FULL-ICP-VA Soil Metals in Soil by ICPOES (CSR SALM) **BCMELP CSR SALM METHOD 8** This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - optical emission

MOISTURE-VA

spectrophotometry (EPA Method 6010B).

Soil

Moisture content

ASTM METHOD D2794-00

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

Methods Listed (if applicable):

Soil

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
MOISTURE-VA	Soil		ASTM METHOD D2794-00

This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours.

PH-1:2-VA

CSR pH by 1:2 Water Leach

BC WLAP METHOD: PH, ELECTROMETRIC, SOIL

This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/Inorganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <60°C) and sieved (10 mesh /2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe.

PSA-PIPET+GRAVEL-SK Soil

Particle size - Sieve and Pipette

FORESTRY CANADA (1991) P. 46-48 MOD

Particle size analysis involves the measurement of the proportions of the various primary soil particle sizes (ie. clay < 0.004 mm, silt 0.004-0.063 mm, sand 0.063-2.0 mm and gravel > 2.0 mm). In this method, the gravel and sand portions are determined by sieving, while the clay portion is determined by sedimentation using Stokes Law, which relates the radius of the particles to the velocity of the sedimentation in water. Silt is calculated as 100% - (sand% + clay%)

Pretreatment of the soil with Calgon (sodium hexametaphosphate) is used to ensure the complete dispersion of the primary soil particles. Additional pretreatment may be necessary to remove cementing materials such as CaCO3 and organic matter.

Reference

Y.P. Kalra, and D.G. Maynard, 1991. Methods Manual For Forest Soil and Plant Analysis, Northwest Region. Forestry Canada (modified sand, silt and clay size ranges)

SAR-CALC-MGKG-ICP- Soil

Saturated Paste Extraction (ICPOES)

VA Saturated paste sediment extracts are analyzed for metals by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B). Reported metals results have been converted into milligrams per dry kilogram. Sodium Adsorption Ratio (SAR) is calculated from the Sodium, Calcium, and Magnesium concentrations in the saturated paste extract of a sediment sample. The SAR calculation is described in "Soil Sampling and Methods of Analysis" by M. Carter.

SE-CSR-HVAAS-VA Soil

Se in Soil by HVAAS (CSR SALM)

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic absorption spectrophotometry (EPA Method 7000 series).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

TL-CSR-MS-VA

Soil

ICPMS TI in Soil by CSR SALM

BCMELP CSR SALM Method 8

BCMELP/EPA SW-846 6010B

BCMELP CSR SALM Method 8

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
SK	ALS LABORATORY GROUP - SASKATOON, SASKATCHEWAN, CANADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

Lab ID	L686442-1	L686442-2	L686442-3	L686442-4	L686442-5	L686442-6	L686442-7	L686442-8	L686442-9	L686442-14	L686442-15
Weight Soil >2mm (g)	14.0865	53.0056	15.7367	38.3251	9.3475	17.717	59.2076	24.9492	31.0541	47.6001	28.0514
Weight Soil <2mm (g)	125.656	91.9806	142.7736	116.9158	141.5377	132.4353	153.951	166.0265	101.886	97.6777	108.4108

ALS .					442			снлі	N-OF-C	וחדפווי		ORD AN	Π ΔΝΔ	IYSIS R	FOLIES		AGE	1	F 2
Maxxam	8577 Commerce Court Burnaby, BC V5A 4N5 www.maxxamanalytics	.com	Toll F	one: (6 Fax: (6 Free: 1	04) 444-4808 04) 444-4511 -800 -440- 4808	3								EQUEST			36		
RESCAR	J	PH. #: E-mail: FAX #:	-SC Koc	hm	H@ Fescan	can. Cov	iom m-	/Wate	A LENCE										
COMPANY NAME: RESCAR COMPANY ADDRESS: 6th floor III Vancouver B	I W Hastings St	MO	KRI L93	SS -0	01-15	SOIL	-		S A	1									-
SAMPLER NAME (PRINT):		PROJECT						1:2	< 2 m	<u>S</u>									
LAURA KO	CH	-		-	HMIT			HA	12	4									
FIELD SAMPLE ID	MAXXAM LAB # (Lab Use Only)	GROUND WATER SURFACE WATER		0THER	DATE	APLING WIL	HEADSPACE VAPOUR	t	Caloz	sk' m							1		
		SUR K			DD/MM/YY	-	HEAI	P)	r R Ç	2		_				-			
1 <u>RSI-</u> 2 <u>RS2-</u> 1			X		8/9/08			V		/ /						-		-	-
³ RS,2-2								V	VV	~									
4 RS3-0.8							-	V	/ /	~									
5 RS3-2 6 RS3-3				_				$\sqrt{\iota}$											
6 R\$3-3				_				V	VV.				_			2	\vdash	\rightarrow	
7 RSY-1 8 RS4-2				-						v v					\vdash	-			
• RS4-2 • RS4-3										V								+	-
10 RS5-1	A CONTRACTOR OF THE PARTY OF TH							1		1									
11 RS5-2								\checkmark		>									
12 RS6-1			V		\vee			~		✓									
TAT (Turnaround Time) <5 DAY TAT MUST HAVE PRIOR APPROVAL *some exceptions apply	P.O. NUMBER / QUOTE NUMB	ER:	Textua	San Sil Cla	y Deal	-2m -272	un)- 2	um	7.5 E	CCME CSR ALBERTA OTHER	I	RRIVAL TEMPE			USE ONLY		og in c	HECK	2
please contact lab STANDARD 5 BUSINESS DAYS RUSH 3 BUSINESS DAYS RUSH 2 BUSINESS DAYS URGENT 1 BUSINESS DAY	ACCOUNTING CONTACT:	- Part	~>>	ECIAL R	eporting or bi	Zmm a	nd -	2 m m		JARS USI	ED:								
OTHER BUSINESS DAYS	RELINQUISHED BY:	EMP	Koc	1	DD/MN DATE:	m jer	233	TIME	15:	47	RECEIV		1	270	n-				
CUSTODY RECORD	RELINQUISHED BY:				DD/MM DATE: DD/MM			TIME	:		RECEN	ED BY LA	BORATOR	RY:					_

H->.			Phone: (f	(04) 444-4808	2	C	CHAIN-	OF-CU	STOD	RECO	RD AI	VD AN	ALYSIS	REQU	EST	PAG	2	OF	2
Maxam	Burnaby, BC V5A 4N5 www.maxxamanalytics	s.com To		04) 444-4808 04) 444-4511 -800-440-480				λ.					REQUE				66		
COMPANY NAME: RESCAN COMPANY ADDRESS: 6th fl- 1111 W. H Vancaive BC SAMPLER NAME (PRINT):	J tastings St	PH. #: E-mail: FAX #: IKO CLIENT PROJE MORRI 0793 PROJECT MAN	-001 Ager:	- Soit -15	can . Co : Com		2 Soil /Water	BUIVALIENCE											
LAURA KO	ocit	ROF _					V N	5.	214				:						
FIELD SAMPLE ID	MAXXAM LAB # (Lab Use Only)	SOIL SOIL	OTHER # CONTAINERS			DR	EC+PH Texture	Caco	CSR'Meta										
1 RS6-2		×		8/9/08			/ ^	۰ L											
2 R37-1 3 RS7-2	1911年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日					ι	11	1								_		_	
3 RS7-2				V		L	V	U		_									
5																			
6																_	1		
8																			
9																			
10																			
11									_						_	_			
12	P.O. NUMBER / QUOTE NUMB									1200	1000	CLAT CR		AB LISE ()	NIV	-		Sec.	-
Some exceptions apply please contact lab	ER: Special detection limits / contaminant ty Sand > 0,5to 2 mm Silt -015 to > 2 mm Clay 0 - 2 mm - Special REPORTING OR BILLING INSTRUCTIONS						0	SR LBERTA TIE	ER 1	VAL TEMP	PERATURE	TOUE DUE D			LOG	IN CHE	CK:		
STANDARD 5 BUSINESS DAYS RUSH 3 BUSINESS DAYS RUSH 2 BUSINESS DAYS URGENT 1 BUSINESS DAY	RELINQUISHED BY SAMPLER:		freti	ons from DATE:	screen	رو .	m m		+7	RECEIVE	D BY:	K		<u> </u>		<u> </u>			
CUSTODY	RELINQUISHED BY:	a TVA	gz	DD/MN DATE:		¥	TIME:).	17	RECEIVE	O BY:	1	1-0	ter)			\neg
RECORD	RELINQUISHED BY:			DD/MN DATE: DD/MN			TIME:		1	RECEIVE	D BY LA	BORATO	RY:						
	COCEORM - BC - 01/05			1								AL . MAAY	****	VELLOW	A KAAV	VA84	ים		